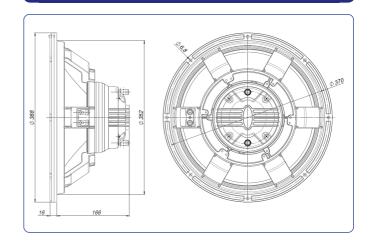


15XA38Nd COAXIAL TRANSDUCER

KEY FEATURES

- High power handling: 350 / 90 W_{AES} (LF / HF)
- High sensitivity: 99 / 105 dB (LF / HF)
- Low resonant frequency: 38 Hz
- Low weight and compact common magnet system design
- · Demodulating rings in LF and HF units
- Composite Titanium/Mylar diaphragm
- 80° coverage horn for HF dispersion control

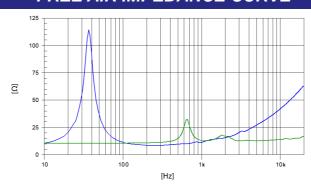
TECHNICAL SPECIFICATIONS


Nominal diameter Rated impedance (LF/HF)	3		15 in 3 / 16 Ω
Minimum impedance (LF/HF)		8,4	′ 12,6 Ω
Power capacity* (LF/HF)	350 / 90 W _{AES}		
Program power (LF/HF)		700	/ 180 W
Sensitivity (LF/HF**)	99 dB	1W / 1	m @ Z _N
	105 dB	1W / 1	m @ Z _N
Frequency range		40 - 20	.000 Hz
Recom. HF crossover	1,5 kHz or higher		
	(1:	2 dB/oct r	nin slope)
Voice coil diameter (LF/HF)	101,	6 mm	4 in
	72,	4 mm	2,85 in
BL factor		2	0,4 N/A
Moving mass		0	,082 kg
Voice coil length			16 mm
Air gap height			9 mm
X _{damage} (peak to peak)			28 mm

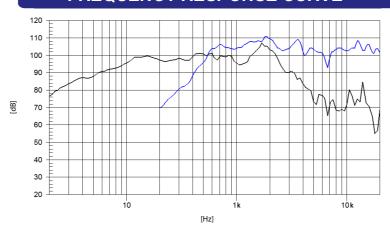
THIELE-SMALL PARAMETERS***

Resonant frequency, f _s	38 Hz
D.C. Voice coil resistance, R _e	6,7 Ω
Mechanical Quality Factor, Q _{ms}	6,4
Electrical Quality Factor, Q _{es}	0,31
Total Quality Factor, Q _{ts}	0,30
Equivalent Air Volume to C _{ms} , V _{as}	238 I
Mechanical Compliance, C _{ms}	$217~\mu m$ / N
Mechanical Resistance, R _{ms}	3 kg / s
Efficiency, η ₀	3,9 %
Effective Surface Area, S _d	0,088 m ²
Maximum Displacement, X _{max} ****	6 mm
Displacement Volume, V _d	528 cm ³
Voice Coil Inductance, L _e @ 1 kHz	1 mH

DIMENSION DRAWINGS

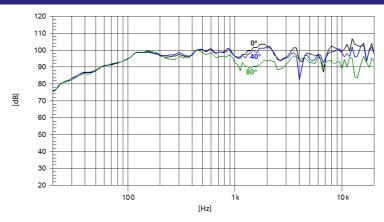

MOUNTING INFORMATION

388 mm	15,28 in
370 mm	14,57 in
352 mm	13,85 in
182 mm	7,17 in
6,8 kg	14,96 lb
7,4 kg	16,28 lb
	, 0


Notes:

- * The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** Sensitivity was measured at 1m distance, on axis, with 1W input, averaged in the range 1 7 kHz.
- *** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- **** The X_{max} is calculated as (L_{VC} H_{ag})/2 + (H_{ag}/3,5), where L_{VC} is the voice coil length and H_{ag} is the air gap height.

FREE AIR IMPEDANCE CURVE



FREQUENCY RESPONSE CURVE

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

FILTERED AND OFF-AXIS FREQUENCY RESPONSE

Note: Filtered frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m with FD-2XA

beyma //

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain)
• Tel.: (34) 96 130 13 75 • Fax: (34) 96 130 15 07 • http://www.beyma.com • E-mail: beyma@beyma.com •